Formation of a stable heterodimer between Smad2 and Smad4.
نویسندگان
چکیده
Smad proteins mediate transforming growth factor beta signaling from the cell membrane to the nucleus. Upon phosphorylation by the activated receptor kinases, the receptor-regulated Smad, such as Smad2, forms a heterocomplex with the co-mediator Smad, Smad4. This heterocomplex is then translocated into the nucleus, where it associates with other transcription factors and regulates expression of ligand-responsive genes. The stoichiometry between receptor-regulated Smad and co-mediator Smad is important for understanding the molecular mechanisms of the signaling process. Using purified recombinant proteins, we demonstrate that Smad2 and Smad4 form a stable heterodimer and that the Smad4 activation domain is important for the formation of this complex. Many tumor-derived missense mutations disrupt the formation of this heterocomplex in in vitro interaction assays. Mapping these mutations onto the structures of Smad4 and Smad2 identifies a symmetric interface between these two Smad proteins. Importantly, two previous models on the formation of a heterocomplex are incompatible with our observations and other reported evidence.
منابع مشابه
Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression.
TGF-beta and its signaling mediators, Smad2, -3, and -4, are involved with tumor suppression and promotion functions. Smad4-/- mouse epidermis develops spontaneous skin squamous cell carcinomas (SCCs), and Smad3-/- mice are resistant to carcinogen-induced skin cancer; however, the role of Smad2 in skin carcinogenesis has not been explored. In the present study, we found that Smad2 and Smad4, bu...
متن کاملSMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
Activation of the canonical TGF-β signaling pathway provides growth inhibitory signals in the normal intestinal epithelium. Colorectal cancers (CRCs) frequently harbor somatic mutations in the pathway members TGFBR2 and SMAD4, but to what extent mutations in SMAD2 or SMAD3 contribute to tumorigenesis is unclear. A cohort of 744 primary CRCs and 36 CRC cell lines were sequenced for SMAD4, SMAD2,...
متن کاملTransforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.
Smad4 plays a pivotal role in all transforming growth factor beta (TGF-beta) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorpora...
متن کاملSMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells
To improve cartilage formation by bone marrow-derived mesenchymal stem cells (BMSCs), the signaling mechanism governing chondrogenic differentiation requires better understanding. We previously showed that the transforming growth factor-β (TGFβ) receptor ALK5 is crucial for chondrogenesis induced by TGFβ. ALK5 phosphorylates SMAD2 and SMAD3 proteins, which then form complexes with SMAD4 to regu...
متن کاملMolecular and Cellular Pathobiology SMAD2, SMAD3 and SMAD4Mutations in Colorectal Cancer
Activation of the canonical TGF-b signaling pathwayprovides growth inhibitory signals in the normal intestinal epithelium. Colorectal cancers (CRCs) frequently harbor somatic mutations in the pathway members TGFBR2 and SMAD4, but towhat extentmutations in SMAD2 or SMAD3 contribute to tumorigenesis is unclear. A cohort of 744 primary CRCs and 36 CRC cell lines were sequenced for SMAD4, SMAD2, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 23 شماره
صفحات -
تاریخ انتشار 2001